Supplementary Text A. Neural network training for colistin resistance prediction

In the last 15 or so years, colistin is being used increasingly as a 'last-line' therapeutic to treat infections caused by multidrug-resistant (MDR) Gram-negative bacteria, including E. *coli* and K. *pneumoniae*, when practically no β -lactam options are available [1]. Therefore it is also very relevant to study colistin together with β -lactams, especially 3^{rd} generation cephalosporins and carbapenems.

In Norway, minimum inhibitory concentration (MIC) for colistin was determined by broth microdilution using Sensititre surveillance EUVSECTM 96 well plates (ThermoFisher). Plates were inoculated using the Sensititre AutoInoculatorTM (AIM, V3020, Sensititre), incubated for 18-24 hours, and subsequently read both with the naked eye using the Sensititre Manual ViewboxTM (V4007, Sensititre) and using the Sensititre Vizion Digital MIC Viewing SystemTM (V2021, Sensititre). *E. coli* ATCC 25922 and *E. coli* IP2.1 were used as quality strains for *E. coli* and *K. pneumoniae* isolates, respectively. In India, MIC to colistin was determined by broth dilution method as per CLSI guidelines [2]. *E.coli* ATCC 25922 was used as a quality control strain.

None of the AMR-Diag isolates exhibited resistance towards colistin. Therefore we obtained genomes of 30 colistin-resistant isolates from the EMBL-EBI European Nucleotide Archive [3] (Supplementary Table J). Data on the MIC values of these isolates were taken from the NCBI Biosample Antibiograms. Also, we have downloaded 164 polymyxin-resistant isolates from Macesic et al. [4]. We downloaded all acquired polymixin resistance genes from ResFinder (n = 54) and have made a list of polymyxin-associated k-mers (n = 20 882) following the same procedure as for BLAKs. However, only one of the polymyxin k-mers had a higher feature weight, whereas all others had the same low feature weight. A BLAST search of EMBL-EBI colistin-resistant isolates against the ResFinder & CARD database revealed the absence of acquired colistin resistance genes. In contrast, there were point mutations in efflux pumps and porins (Supplementary Table I).

Macesic et al. [4] also have attempted to train a machine-learning algorithm to predict polymyxin resistance in *K. pneumoniae* based on k-mers. The authors used k-mers from the whole genome and have concluded that the assembly-based approach worked better for the task. We attempted to build a neural network based only on k-mers from polymyxin resistance genes in this work. However, we did not succeed in training such a network. In *K. pneumoniae*, alterations in chromosomal genes such as *mgrB*, *pmrA/B*, *phoPQ*, and *crrA/B* systems mostly

contribute to the colistin-resistance phenotype [5]. These chromosomal alterations are only partially recognized by ResFinder and CARD databases, which can probably explain a failure to train k-mer based neural networks. For this reason, a different search approach should be carried out.

Reference:

- 1. Nation, R.L. and J. Li, *Colistin in the 21st century*. Curr Opin Infect Dis, 2009. **22**(6): p. 535-43.
- 2. CLSI, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. CLSI document M7-A7. Clinical and Laboratory Standards Institute, Wayne, PA.
- 3. Leinonen, R., et al., *The European Nucleotide Archive*. Nucleic Acids Res, 2011. **39**(Database issue): p. D28-31.
- 4. Macesic, N., et al., Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data. mSystems, 2020. 5(3).
- 5. Palmieri, M., et al., Genomic Epidemiology of Carbapenem- and Colistin-Resistant Klebsiella pneumoniae Isolates From Serbia: Predominance of ST101 Strains Carrying a Novel OXA-48 Plasmid. Front Microbiol, 2020. 11: p. 294.